Files
notes/projects/neosphere/ml-server/20250711-qwerty_multi-GPU.md
Petar Cubela 252a91dbcc ]
2025-07-15 15:36:24 +02:00

65 lines
3.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
### **Multi-GPU Setup: Boltz vs. Ollama+OpenWebUI**
To maximize GPU utilization while running **Boltz** (likely a large-scale AI model) and **Ollama+OpenWebUI** (a smaller, lightweight LLM inference tool), here's a structured approach:
---
### **1. Separate GPUs for Different Workloads**
**Best Practice**:
- **Use separate GPUs** for **Boltz** and **Ollama+OpenWebUI**.
- **Why**:
- **Boltz** likely requires **high VRAM** (e.g., 96 GB for H100) and **low-latency inter-GPU communication** (NVLink) for distributed tasks.
- **Ollama+OpenWebUI** uses **smaller models** (e.g., 7B or less) and **low VRAM** (e.g., 1632 GB).
- Separating them avoids **resource contention** (e.g., VRAM, compute bandwidth) and ensures each tool gets optimal performance.
**Implementation**:
- Assign **H100** to **Boltz** (via `CUDA_VISIBLE_DEVICES=0`).
- Assign **L40** to **Ollama+OpenWebUI** (via `CUDA_VISIBLE_DEVICES=1`).
- Ensure both GPUs are **recognized and functional** via `nvidia-smi`.
---
### **2. Shared GPU for Same Workload**
**Use Case**:
- If both tools **require the same GPU** (e.g., for a single inference task or model parallelism), use **NVLink** for **low-latency communication**.
- **Why**:
- NVLink (H100) or PCIe 4.0 (L40) enables **cross-GPU data transfer** for distributed inference or model parallelism.
- Requires **CUDA-aware MPI** or **Distributed Memory Frameworks** (e.g., PyTorch Distributed, Horovod).
**Implementation**:
- Configure both tools to use **both GPUs** (e.g., `CUDA_VISIBLE_DEVICES=0,1`).
- Use **NVLink** (for H100) or **PCIe 4.0** (for L40) to minimize latency.
- Ensure **Boltz** and **Ollama** are compatible with **multi-GPU workflows** (e.g., model sharding, pipeline parallelism).
---
### **3. Key Considerations**
| **Factor** | **Recommendation** |
|--------------------------|-------------------------------------------------------------------------------------|
| **GPU Allocation** | Use **separate GPUs** for Boltz and Ollama+OpenWebUI to avoid resource contention. |
| **Inter-GPU Communication** | Use **NVLink** (H100) or **PCIe 4.0** (L40) for shared GPU workflows. |
| **Software Compatibility** | Ensure **Boltz** and **Ollama** support multi-GPU setups (e.g., CUDA-aware MPI). |
| **VRAM Utilization** | Allocate **H100** to Boltz (high VRAM) and **L40** to Ollama (low VRAM). |
| **Driver Configuration** | Install **NVIDIA drivers 535+** and ensure **CUDA 12.x** compatibility. |
---
### **4. Optimal Workflow**
- **Separate GPUs**:
- **Boltz**: Use H100 with **NVLink** for distributed training/inference.
- **Ollama+OpenWebUI**: Use L40 for lightweight LLM inference.
- **Advantages**: Maximized VRAM, reduced latency, and no resource contention.
- **Shared GPU**:
- **Boltz**: Use H100 for large-scale tasks.
- **Ollama+OpenWebUI**: Use H100 for lightweight tasks (e.g., model serving).
- **Advantages**: Single GPU utilization, but requires careful resource management.
---
### **5. Final Advice**
- **Prioritize Separate GPUs**: For most use cases, **Boltz** and **Ollama+OpenWebUI** will benefit from **dedicated GPUs**.
- **NVLink is Optional**: Only use it if you need **cross-GPU communication** for advanced workflows (e.g., model parallelism).
- **Monitor Performance**: Use `nvidia-smi` and **Prometheus/Grafana** to track GPU utilization, VRAM, and latency.
By separating the workloads, you ensure **maximum efficiency** for both tools while leveraging the full potential of your hardware. 🚀