### **Multi-GPU Setup: Boltz vs. Ollama+OpenWebUI** To maximize GPU utilization while running **Boltz** (likely a large-scale AI model) and **Ollama+OpenWebUI** (a smaller, lightweight LLM inference tool), here's a structured approach: --- ### **1. Separate GPUs for Different Workloads** **Best Practice**: - **Use separate GPUs** for **Boltz** and **Ollama+OpenWebUI**. - **Why**: - **Boltz** likely requires **high VRAM** (e.g., 96 GB for H100) and **low-latency inter-GPU communication** (NVLink) for distributed tasks. - **Ollama+OpenWebUI** uses **smaller models** (e.g., 7B or less) and **low VRAM** (e.g., 16–32 GB). - Separating them avoids **resource contention** (e.g., VRAM, compute bandwidth) and ensures each tool gets optimal performance. **Implementation**: - Assign **H100** to **Boltz** (via `CUDA_VISIBLE_DEVICES=0`). - Assign **L40** to **Ollama+OpenWebUI** (via `CUDA_VISIBLE_DEVICES=1`). - Ensure both GPUs are **recognized and functional** via `nvidia-smi`. --- ### **2. Shared GPU for Same Workload** **Use Case**: - If both tools **require the same GPU** (e.g., for a single inference task or model parallelism), use **NVLink** for **low-latency communication**. - **Why**: - NVLink (H100) or PCIe 4.0 (L40) enables **cross-GPU data transfer** for distributed inference or model parallelism. - Requires **CUDA-aware MPI** or **Distributed Memory Frameworks** (e.g., PyTorch Distributed, Horovod). **Implementation**: - Configure both tools to use **both GPUs** (e.g., `CUDA_VISIBLE_DEVICES=0,1`). - Use **NVLink** (for H100) or **PCIe 4.0** (for L40) to minimize latency. - Ensure **Boltz** and **Ollama** are compatible with **multi-GPU workflows** (e.g., model sharding, pipeline parallelism). --- ### **3. Key Considerations** | **Factor** | **Recommendation** | |--------------------------|-------------------------------------------------------------------------------------| | **GPU Allocation** | Use **separate GPUs** for Boltz and Ollama+OpenWebUI to avoid resource contention. | | **Inter-GPU Communication** | Use **NVLink** (H100) or **PCIe 4.0** (L40) for shared GPU workflows. | | **Software Compatibility** | Ensure **Boltz** and **Ollama** support multi-GPU setups (e.g., CUDA-aware MPI). | | **VRAM Utilization** | Allocate **H100** to Boltz (high VRAM) and **L40** to Ollama (low VRAM). | | **Driver Configuration** | Install **NVIDIA drivers 535+** and ensure **CUDA 12.x** compatibility. | --- ### **4. Optimal Workflow** - **Separate GPUs**: - **Boltz**: Use H100 with **NVLink** for distributed training/inference. - **Ollama+OpenWebUI**: Use L40 for lightweight LLM inference. - **Advantages**: Maximized VRAM, reduced latency, and no resource contention. - **Shared GPU**: - **Boltz**: Use H100 for large-scale tasks. - **Ollama+OpenWebUI**: Use H100 for lightweight tasks (e.g., model serving). - **Advantages**: Single GPU utilization, but requires careful resource management. --- ### **5. Final Advice** - **Prioritize Separate GPUs**: For most use cases, **Boltz** and **Ollama+OpenWebUI** will benefit from **dedicated GPUs**. - **NVLink is Optional**: Only use it if you need **cross-GPU communication** for advanced workflows (e.g., model parallelism). - **Monitor Performance**: Use `nvidia-smi` and **Prometheus/Grafana** to track GPU utilization, VRAM, and latency. By separating the workloads, you ensure **maximum efficiency** for both tools while leveraging the full potential of your hardware. 🚀